10

15

PATENT
Attorney Docket No: 53470.003041

SYSTEM AND METHOD FOR RUN-TIME REPORT RESOLUTION OF REPORTS

THAT INCLUDE PROMPT OBJECTS

Field of the Invention

This invention relates to a reporting system that resolves reports that include
prompt objects at execution, thereby allowing parameters of a report to be undefined until
actual report execution.

Background of the Invention

Reporting and decision support systems have been developed to efficiently
retrieve selected information from data warehouses. One type of decision support system
is known as an on-line analytical processing system (“OLAP”). In general, OLAP
systems analyze the data from a number of different perspectives and support complex
analyses against large input data sets. OLAP systems generate output upon execution of a
report that includes a template to indicate the way to present the output and a filter to
specify the conditions of data on which the report is to be processed.

Reports may be extremely complicated and require many seconds, minutes, and
sometimes even hours to process. Designing such complex reports is labor intensive.
Further, in current systems, once a report is designed, if a user desires to change the
template, filter, or any other sub-object or component, a completely new report must be

created through the same laborious tasks. Although some report writing wizards have

been developed in this field, those wizards also must be programmed and often only

provide specific options from which a report designer may choose. Accordingly, the

10

15

20

2 PATENT
Attorney Docket No.: 53470.003041

s
report writing wizards are often not useful to the report designer that generates a complex
report. The inflexibility of current report creation systems is a drawback of current
OLAP. Other drawbacks with current systems exist as well.

Summary of the Invention

Accordingly, the present invention provides prompt objects that may be used to
define some or every aspect of a report. A prompt object in object-oriented programming
terms is a separate object from any report in which it is contained. In one embodiment, a
prompt object contains a single question to be answered, validation values for the answer,
and attributes indicating how the prompt object is to be processed. In addition, default
values may be provided for the prompt object.

A report can thus be defined by selecting prompt objects in place of portions of
static report definition including, but not limited to, templates, filters, or any of the
aspects of a template or filter. Report definition involves specification of the elements to
generate an output. For example, if a template is defined by a prompt object, then when a
report is executed, the report prompts the user to select a template. The selected template
is then validated based on the prompt object validation values and then processed. To
resolve a report, a report instance — a term used to indicate an actual execution of a
defined report — is created at the client side and passed to the intelligence server. The
intelligence server then passes the report instance to a resolution server that collects all of
the prompt objects contained in the report instance, such as through the use of an object
server that retrieves the prompt objects from the metadata repository through a metadata

server. The resolution server creates a resolution object that includes all of the prompt

10

15

20

3 PATENT
Attorney Docket No.: 53470.003041

questions from all of the prompt objects in the report instance by extracting the questions
and validation criteria from the prompt objects. The resolution object then comprises a
complete list of all of the questions to be answered to fill in the blanks of the report
definition to be executed.

A client-side report server is then passed the report instance with the resolution
object. The client-side report server then raises an event to prompt the user to respond to
the questions in the resolution object. If an answer to a question in the resolution object
raises additional prompt objects, then the process iteratively passes the report instance
back and forth between client and server until the user on the client side has answered all
questions with an answer that does not lead to another prompt.

The resolution server then creates an application object from the origin
application object with the answers from the resolution object “filled in” to the prompts.
The application object contains logic that understands how to fill in the answers to create
a prompt-free application object. The report execution modules then process the
application object just as it does every other one without any indication that the
application object ever had any prompts. Thus, prompts are used without any change to
the report execution modules.

By using prompt objects that are resolved at run-time, a complex report may be
created that enables a wide variety of variation, depending on user preferences. A
relatively untrained person may then execute the report, respond to the prompts and get a

customized report.

10

15

20

4 PATENT
Attorney Docket No.: 53470.003041

This system provides advantages over report-writing wizards as well because it
enables easy customization of the questions to be asked to the user. Only those properties
or objects that are defined by prompts result in a question for the user to answer prior to
run-time execution. The benefit is illustrated by an example. A report wizard has a fixed
number of questions and answers to be provided before it creates a report. By using
prompt objects, the report creator determines the number of questions. Instead of
requiring the user to input fifteen answers, therefore, the user may only be required to
provide two or three, for example. Further, the question may ask for the template and
filter. Also, the questions to be asked of the user may be changed by selecting different
prompt objects, rather than having to rewrite the wizard code.

Other objects and advantages of the invention will be apparent to one of ordinary
skill in the art upon reviewing the detailed description of the invention.

Brief Description of the Drawings

Fig. 1 illustrates a network architecture according to an embodiment of the
invention.

Fig. 2 illustrates a flowchart of query engine processing according to an
embodiment of the invention.

Fig. 3 depicts a flow diagram of the relationship between components of a report
instance according to an embodiment of the present invention.

Fig. 4 depicts a schematic diagram illustrating prompt object report initiation

according to an embodiment of the present invention.

10

15

20

5 PATENT
Attorney Docket No.: 53470.003041

Fig. 5 depicts a schematic diagram illustrating prompt object report resolution
components according to an embodiment of the present invention.

Fig. 6 depicts a schematic diagram illustrating user prompt execution according to
an embodiment of the present invention.

Fig. 7 depicts a diagram illustrating the relationship between prompt object,
prompt instance and resolution object properties according to an embodiment of the
present invention.

Fig. 8 depicts a schematic diagram illustrating an example template with prompt
objects included according to an embodiment of the present invention.

Fig. 9 depicts a schematic diagram indicating use of a prompt object used by a
parent and child object according to an embodiment of the present invention.

Fig. 10 depicts output of a template using a prompt object according to an
embodiment of the present invention.

Figs. 11a and 11b depict output of metrics of a template according to an
embodiment of the present invention.

Fig. 12 depicts a table illustrating actions on draft prompts according to an
embodiment of the present invention.

Fig. 13 depicts a diagram illustrating draft prompt resolution according to an
embodiment of the present invention.

Fig. 14 depicts a table illustrating properties of various types of prompts according

to an embodiment of the present invention.

10

15

20

6 PATENT
Attorney Docket No.: 53470.003041

Figs. 15-17 illustrate objects used to manipulate prompts under different uses of
the prompts according to an embodiment of the present invention.
Detailed Description of the Invention

The present invention provides prompt objects for use in resolving reports in a

reporting, decision support system, business intelligence or OLAP system. An

embodiment of an architecture for processing reports in which this invention may be used

1s provided in Figs. 1 and 2 which are described below.

Throughout the specification, an embodiment of prompt objects used to prompt a
user connected to a reporting system using a client-server architecture is provided. It
should be appreciated that the present invention is also applicable to a system in which a
user connects to a reporting system server through a web interface, telephone interface,
report requesting system with reports automatically delivered to the user or some other
interface. MicroStrategy’s Narrowcaster, Telecaster, and Web systems may be used, for
example.

Fig. 1 is a block diagram illustrating a system 100 by which a variety of data
resources may be accessed for business analytic, report generation and other intelligence
purposes according to an embodiment of the invention. According to a preferred
embodiment, the system 100 may‘comprise an Online Analytical Processing (OLAP)
decision support system (DSS). In particular, Fig. 1 may comprise a portion of the
MicroStrategy 7 or 7.1 platform which provides a preferred system in which the present

invention may be implemented.

10

15

20

7 PATENT
Attorney Docket No.: 53470.003041

In general, through using the system 100 of the invention, analysts, managers and
other users may query or interrogate a plurality of databases or database arrays to extract
demographic, sales, and/or financial data and information and other patterns from records
stored in such databases or database arrays to identify strategic trends. Those strategic
trends may not be discernable without processing the queries and treating the results of
the data extraction according to the techniques performed by the systems and methods of
the invention. This is in part because the size and complexity of some data portfolios
stored in such databases or database arrays may mask those trends.

In addition, system 100 may enable the creation of reports or services that are
processed according to a schedule. Users may then subscribe to the service, provide
personalization criteria and have the information automatically delivered to the user, as
described in U.S. Patent No. 6,154,766 to Yost et al., which is commonly assigned and
hereby incorporated by reference.

As illustrated in Fig. 1, a business, a government or another user may access the
resources of the system 100 using a user engine 102. The user engine 102 may include a
query input module 116 to accept a plurality of searches, queries or other requests, via a
query box on a graphical user interface (GUI) or another similar interface. The user
engine 102 may communicate with an analytical engine 104. The analytical engine 104
may include a set of extensible modules to run a plurality of statistical analyses, to apply
filtering criteria, to perform a neural net technique or another technique to condition and
treat data extracted from data resources hosted in the system 100, according to a query

received from the user engine 102.

5

10

15

20

8 PATENT
Attorney Docket No.: 53470.003041

The analytical engine 104 may communicate with a query engine 106, which in
turn interfaces to one or more data storage devices 108a, 108b ... 108n (where n is an
arbitrary number). The data storage devices 108a, 108b ... 108n may include or interface
to a relational database or another structured database stored on a hard disk, an optical
disk, a solid state device or another similar storage media. When implemented as
databases, the data storage devices 108a, 108b ... 108n may include or interface to, for
example, an Oracle™ relational database such as sold commercially by Oracle
Corporation, an Informix™™ database, a Database 2 (DB2) database, a SybaseTM database,
or another data storage device or query format, platform or resource such as an OLAP
format, a Standard Query Language (SQL) format, a storage area network (SAN), or a
Microsoft Access™ database. It should be understood that while data storage devices
108a, 108b ... 108n are illustrated as a plurality of data storage devices, in some
embodiments the data storage devices may be contained within a single database or
another single resource.

Any of the user engine 102, the analytical engine 104 and the query engine 106 or
other resources of the system 100 may include or interface to or be supported by
computing resources, such as one or more associated servers. When a server is employed
for support, the server may include, for instance, a workstation running a Microsoft

™MNT™ operating system, a Windows™ 2000 operating system, a Unix

Windows
operating system, a Linux operating system, a Xenix operating system, an IBM AIX™

operating system, a Hewlett-Packard UX™ operating system, a Novell Netware™

operating system, a Sun Microsystems Solaris™ operating system, an OS/2™ operating

10

15

20

? PATENT
Attorney Docket No.: 53470.003041

system, a BeOS™

operating system, a MacIntosh operating system, an Apache platform,
an OpenStepTM operating system, or another similar operating system or platform.
According to one embodiment of the present invention, analytical engine 104 and query
engine 106 may comprise elements of an intelligence server 103.

The data storage devices 108a, 108b ... 108n may be supported by a server or
another resource and may, in some embodiments, include redundancy, such as a
redundant array of independent disks (RAID), for data protection. The storage capacity
of any one or more of the data storage devices 108a, 108b ... 108n may be of various
sizes, from relatively small data sets to very large database (VLDB)-scale data sets, such
as warchouses holding terabytes of data or more. The fields and types of data stored
within the data storage devices 108a, 108b ... 108n may also be diverse, and may include,
for instance, financial, personal, news, marketing, technical, addressing, governmental,
military, medical or other categories of data or information.

The query engine 106 may mediate one or more queries or information requests
from those received from the user at the user engine 102 to parse, filter, format and
otherwise process such queries to be submitted against the data contained in the data
storage devices 108a, 108b ... 108n. Thus, a user at the user engine 102 may submit a
query requesting information in SQL format, or have the query translated to SQL format.
The submitted query is then transmitted via the analytical engine 104 to the query engine
106. The query engine 106 may determine, for instance, whether the transmitted query

may be processed by one or more resources of the data storage devices 108a, 108b ...

108n in its original format. If so, the query engine 106 may directly transmit the query to

10

15

20

10 PATENT
Attorney Docket No.: 53470.003041

one or more of the resources of the data storage devices 108a, 108b ... 108n for
processing.

If the transmitted query cannot be processed in its original format, the query
engine 106 may perform a translation of the query from an original syntax to a syntax
compatible with one or more of the data storage devices 108a, 108b ... 108n by invoking
a syntax module 118 to conform the syntax of the query to standard SQL, DB2,
Informix ™, Sybase™ formats or to other data structures, syntax or logic. The query
engine 106 may likewise parse the transmitted query to determine whether it includes any
invalid formatting or to trap other errors included in the transmitted query, such as a
request for sales data for a future year or other similar types of errors. Upon detecting an
invalid or an unsupported query, the query engine 106 may pass an error message back to
the user engine 102 to await further user input.

When a valid query such as a search request is received and conformed to a proper
format, the query engine 106 may pass the query to one or more of the data storage
devices 108a, 108n ... 108n for processing. In some embodiments, the query may be
processed for one or more hits against one or more databases in the data storage devices
108a, 108b ... 108n. For example, a manager of a restaurant chain, a retail vendor or
another similar user may submit a query to view gross sales made by the restaurant chain
or retail vendor in the State of New York for the year 1999. The data storage devices
108a, 108b ... 108n may be searched for one or more fields corresponding to the query to

generate a set of results 114.

10

15

20

11 PATENT
Attorney Docket No.: 53470.003041

Although illustrated in connection with each data storage device 108 in Fig. 1, the
results 114 may be generated from querying any one or more of the databases of the data
storage devices 108a, 108b ... 108n, depending on which of the data resources produce
hits from processing the search query. In some embodiments of the system 100 of the
invention, the results 114 may be maintained on one or more of the data storage devices
108a, 108b ... 108n to permit one or more refinements, iterated queries, joinders or other
operations to be performed on the data included in the results 114 before passing the
information included in the results 114 back to the analytical engine 104 and other
elements of the system 100.

When any such refinements or other operations are concluded, the results 114 may
be transmitted to the analytical engine 104 via the query engine 106. The analytical
engine 104 may then perform statistical, logical or other operations on the results 114 for
presentation to the user. For instance, the user may submit a query asking which of its
retail stores in the State of New York reached $1M in sales at the earliest time in the year
1999. Or, the user may submit a query asking for an average, a mean and a standard
deviation of an account balance on a portfolio of credit or other accounts.

The analytical engine 104 may process such queries to generate a quantitative
report 110, which may include a table or other output indicating the results 114 extracted
from the data storage devices 108a, 108b ... 108n. The report 110 may be presented to
the user via the user engine 102, and, in some embodiments, may be temporarily or
permanently stored on the user engine 102, a client machine or elsewhere, or printed or

otherwise output. In some embodiments of the system 100 of the invention, the report

10

15

20

12 PATENT
Attorney Docket No.: 53470.003041

110 or other output may be transmitted to a transmission facility 112, for transmission to
a set of personnel via an email, an instant message, a text-to-voice message, a video or via
another channel or medium. The transmission facility 112 may include or interface to, for
example, a personalized broadcast platform or service such as the Narrowcaster ™
platform or Telecaster™ service sold by MicroStrategy Incorporated or another similar
communications channel or medium. Similarly, in some embodiments of the invention,
more than one user engine 102 or other client resource may permit multiple users to view
the report 110, such as, for instance, via a corporate intranet or over the Internet using a
Web browser. Various authorization and access protocols may be employed for security
purposes to vary the access permitted users to such report 110 in such embodiments.

Additionally, as described in the ‘766 Patent, an administrative level user may
create a report as part of a service. Subscribers/users may then receive access to reports
through various types of of data delivery devices including telephones, pagers, PDAs,
WAP protocol devices, email, facsimile, and many others. In addition, subscribers may
specify trigger conditions so that the subscriber receives a report only when that condition
has been satisfied, as described in detail in the ‘766 Patent. The platform of Fig. 1 may
have many other uses, as described in detail with respect to the MicroStrategy 7 and 7.1
platform, the details of which will be appreciated by one of ordinary skill in the reporting
and decision support system art.

The steps performed in a method 200 for processing data according to the
invention are illustrated in the flowchart of Fig. 2. In step 202, the method 200 begins.

In step 204, the user may supply input, such as a query or a request for information, via

15

20

13 PATENT
Attorney Docket No.: 53470.003041

the user engine 102. In step 206, the user input query may be preliminarily processed, for
instance, to determine whether it includes valid fields and for other formatting and error-
flagging issues. In step 208, any error conditions may be trapped and an error message
presented to the user, for correction of the error conditions. In step 210, if a query isin a
valid format, the query may then be transmitted to the analytical engine 104.

In step 212, the analytical engine 104 may further process the input query as
appropriate to ensure the intended results 114 may be generated to apply the desired
analytics. In step 214, the query engine 106 may further filter, format and otherwise
process the input query to ensure that the query is in a syntax compatible with the syntax
of the data storage devices 108a, 108b ... 108n. In step 216, one or more appropriate
databases or other resources within the data storage devices 108a, 108b ... 108n may be
identified to be accessed for the given query.

In step 218, the query may be transmitted to the data storage devices 108a, 108b
... 108n and the query may be processed for hits or other results 114 against the content
of the data storage devices 108a, 108b ... 108n. In step 220, the results 114 of the query
may be refined, and intermediate or other corresponding results 114 may be stored in the
data storage devices 108a, 108b ... 108n. In step 222, the final results 114 of the
processing of the query against the data storage devices 108a, 108b ... 108n may be
transmitted to the analytical engine 104 via the query engine 106. In step 224, a plurality
of analytical measures, filters, thresholds, statistical or other treatments may be run on the

results 114. In step 226, a report 110 may be generated. The report 110, or other output

o

10

15

20

14 PATENT
Attorney Docket No.: 53470.003041

of the analytic or other processing steps, may be presented to the user via the user engine
102. In step 228, the method 200 ends.

As discussed above, the present invention provides the ability to use prompt
objects to define a report. The following section describes the terminology used in
understanding how reports are resolved with prompt objects.

A prompt object is a part of a report’s definition that is bound at report execution
time, instead of report construction time. When the report is executed, a user supplies an
answer to complete the prompt object.

A report is defined by defining the objects that make up the report. According to
one embodiment of the present invention, part or all of the definition of an object in a
report may be replaced with a prompt object. When the report is executed, the user is
prompted to provide the missing parts of the prompts found in the report’s objects.
Prompts have several uses, including the following. Prompts enable untrained people to
“specify” a report instance. A power user constructs a report using prompt objects. An
untrained person is able to select and execute the report. They then answer a series of
prompted questions to determine the exact parameters used to execute this report
instance. An untrained user does not need to know how to use either any object editors,
or even the any object wizards, but instead answers questions posed in their own frame of
reference. A large installation may have many users of the data warehouse who have no
authority to modify the metadata in any way. Prompts give such users the ability to

‘modify’ a report without changing the metadata. An experienced user may use prompts

10

15

20

15 PATENT
Attorney Docket No.: 53470.003041

as a way of executing several similar reports. The user executes the same report several
times, giving different values for the prompt on each occasion.

The basic functionality of prompts is to “ask a question and get an answer.”
Additionally, prompts may provide the following additional features. Prompts can be
shared between several objects. When several objects in a report use the same prompt,
the question may be asked only once. Each prompt may have a default value. This value
can be used when the report is executed offline (e.g., through the use of the scheduler).
This value is also useful to the GUI when presenting a prompt to the user. Depending on
the type of question that a prompt object asks, a creator of a prompt object may express
restrictions on the set of values that are acceptable as answers of the question. The
system may thus validate the answer to a prompt. Answers given to any or all of the
prompts in a report may be saved. When a report definition is given to the report server
to be executed, the saved answers may be used instead of questioning the user. When the
report server asks the GUI to resolve a prompt, the report server makes the saved answer
available for possible use by the GUL The answers saved from one report can be applied
to the execution of a different report. It is possible to specify that a saved answer to a
specific prompt should be used without prompting the user to answer the prompt again.
In this case no call back may be made to the GUI to answer these prompts.

According to the present invention, a prompt is provided as a prompt object. As
such, the following benefits are realized. The flow of control algorithm regularly calls for
prompts to be passed from one place to another. The DSS Object is the level of

granularity at which that information is transferred. If a large filter contains a single,

10

15

20

16 PATENT
Attorney Docket No.: 53470.003041

small prompt, the entire filter does not have to be sent to the client to answer the prompt.
Also, prompts may be shared much more easily. Implementing prompts as separate
objects enables prompts to be shared because it may simply be referenced to as an object.
If prompts were part of the object that contains the prompt then it would be very hard to
support sharing since one DSS Object would have to point to part of another object. It
would be difficult to decide which of the two objects that share the prompt actually
contains the prompt.

Prompts as separate objects make it much easier to write a light client application
that executes reports. The client application responds to prompts but does not need to
incorporate knowledge of the interfaces used to describe application objects.

There are a number of objects involved in prompt resolution as discussed below.
An application object is an object created by an “Agent-level” interface. Application
objects are used to define reports. The principal application objects are report definitions,
filters, templates and metrics. Each application object can be viewed as a collection of
properties. These propetties are grouped together into interfaces. An object is defined by
specifying a value for each property.

Application objects contain prompt objects that then replace parts of the
application object’s definition. The application object records information about how the
prompts that it contains should be resolved and in particular how they should be related to
prompts in other application objects.

Prompt objects (questions) — A prompt object is an entity that can be associated

with an application object as well as properties in the application object. An application

10

15

20

17 PATENT
Attorney Docket No.: 53470.003041

object may have multiple prompts, each replacing different properties of the object, and
the same prompt object may be used several times but there cannot be more than one
prompt for the same property.

A prompt object includes a question. The designer of the prompt object supplies a
question for the server system to ask to fill in the gap in the object’s definition. Many
different types of prompts may be provided. The type of prompt object corresponds to
the type of data that constitutes a valid answer to the prompt question (e.g., a number, a
string, a filter object, multiple filter-objects, a template unit etc.). A prompt may also
contain information used to validate an answer, and a business explanation of what the
question means. It may contain a default answer to use if the user declines to answer the
question.

Resolution objects (answers) — The process of resolving prompts is the process
of binding an answer to each prompt question in the report instance. A resolution object
may comprise a collection of answers.

While a report instance is being executed, a collection of answers is built up in the
resolution object. In addition, a resolution object may be used to hold the list of
unresolved prompts and to provide a context for resolving the report instance. There 1s
preferably a one to one relationship between prompts that appear in the resolution object,
and questions that are asked to the user. This becomes an issue when a prompt is used
several times in the same report instance. The definition of the report specifies which of

these instances of the prompt are to be merged into a single question. The resolution

10

15

20

18 PATENT
Attorney Docket No.: 53470.003041

object will preferably hold one instance of the prompt for each time that the question is to
be asked, not for each time that the prompt appears in the report instance.

A resolution object is preferably a persistent object. A user may save a resolution
object to metadata. When a report executes, a saved resolution object may be used to
answer some of the prompts in the report instance. Another use of a saved resolution
object is that it can be used to modify the ‘default’ answers to the prompts in a report.

Report instance — A report instance object represents a particular execution of a
report. It contains the exact report definition, filter and template used for the report. It
may contain an application-objects table that contains the exact version of other
application objects used for this report execution. A report instance preferably contains a
single resolution object. The resolution object contains the answers given for the prompts
when this report instance was executed. The report instance object contains numerous
other properties that are built up as the report is executed. Most notably this includes
SQL and the result set.

One other useful property of the report instance is “Job.” This returns the job
object (if known) used to execute this report instance. Internally, a JobID is stored in a
report instance to match report instances with jobs during report execution.

Fig. 3 illustrates an example of an object map of a report instance. A report
instance 302 is a specific execution of a particular report. A report instance has a job ID
as described above. In addition, each report instance 302 is associated with a report
definition 304, a template 306, a filter 308, a resolution object 310, various other

application objects 312, and various object information sources 314.

10

15

20

19 PATENT
Attorney Docket No.: 53470.003041

Prompts are executed as part of a report but entail additional steps from the
ordinary report execution. Control flow for prompt execution generally involves
execution start, acknowledgement, resolution, and prompting the user to complete
resolution. Fig. 4 shows an illustration of how execution starts in a three-tier
environment. A two-tier architecture may also be used with a report execution in place of
an intelligence server and without report net objects. To execute a report, the system
determines a report definition 304 or a filter 308 and template 306.

In one example, execution begins when the client calls methods on a report server
404 to create and execute a client-side report instance 302. There are several ways that
this can be done. The client may supply a report definition 304, which includes a filter
308 and template 306, or may supply the filter 308 and template 306 separately. A
resolution object 310 may also be created or, the client has an option to copy an existing
resolution object 310 into the report instance. This allows the client to provide answers
to some prompt questions before they are asked. According to an embodiment of the
present invention, it should be appreciated that resolution objects may be created for users
by third party systems or as part of the system of the present invention and stored. When
a report is to be executed, then a resolution object may be specified for the report to use in
execution so that the user does not have to answer prompts at run-time. The answers may
be generated and stored in an resolution object and used to process the report.

For example, if a report is scheduled as a part of a subscription service as
described, for example, in U.S. Patent No. 6,154,766, commonly assigned to

MicroStrategy, resolutions objects may be created for subscribers to the report, associated

10

15

20

20 PATENT
Attorney Docket No.: 53470.003041

with the report and then processed with the report when the service is scheduled to result
in personalized reports based on the answers to prompts provided in the report. As part
of that process, the prompts may be generated and provided to the user beforehand and
stored.

Preferably, a client-side report instance 302 is then created, but if the object
definitions are not already loaded on the client, population of the client side report
instance may be delayed. Next, a report server 404 calls a report net client 406 to transfer
the execution request to an intelligence server 408. Report net client 406 comprises a
system that constructs and receives report execution messages on the client side
preferably. Server 408 then uses a report net server 410 to decode the message. A report
net server 410 may comprise a system that constructs and receives report execution
messages on the server side. Report server 412 determines if the cache was hit.
Assuming there was no cache hit, the report server 412 creates a server-side report
instance 414 for this report. Control is returned to the Intelligence server 408. Through
this process, a client side report instance 414 is created for execution.

Next, report instance 414 may be optionally acknowledged as illustrated in Fig. 5.
Server 408 creates a job to execute the report. The JobID is provided to the client-side
report instance so that the user can inquire about the job’s progress. Intelligence server
408 sends a standard message back to the client, and report net client 406 interprets the
message as a job acknowledgement. It writes the JobID into the client-side report
instance. From time to time server 408 may send progress report messages, and other

messages to the client. The client handles them in a similar way to acknowledgement

10

15

20

21 PATENT
Attorney Docket No.: 53470.003041

messages. The difference is that the client may raise an event with the user when it
receives a progress report message.

Next, after acknowledgment, resolution occurs. First, the report is resolved by
loading the application objects 312 into report instance 414 and discovering prompt
objects contained therein. Intelligence server 408 passes report instance 414 to resolution
server 502. The resolution server performs the resolution action on a report instance.
This action involves several logically distinct, but physically intertwined actions,
including loading a version of each application object into the binding table, identifying
the prompt questions to be answered, storing that information in the resolution object,
incorporating the user’s answers to prompts by extending the binding table, and
identifying new prompts. The resolution server uses an object server 504 to get current
versions of the objects in report instance 414.

Object server 504 supplies DSS objects used during execution and acts as the
gatekeeper to a metadata server 506. It stores references to these objects in the report
instance’s AppObjects table 312. Object server 504 uses metadata server 506 to load in
missing objects from metadata repository 508 (if there are any). If resolution server 502
was started with its ‘CacheOnly’ flag set, and it is tasked to load in additional objects,
then resolution server 502 abandons report execution at this point and passes control back
to Intelligence server 408. Resolution server 502 obtains the complete list of prompts n
report instance 414. It stores a list of prompts in resolution object 310. It detects whether
or not report instance 414 has any outstanding prompts. If there are prompts, but each

one of them is answered, then resolution server 502 asks report server 412 to check its

10

15

20

22 PATENT
Attorney Docket No.: 53470.003041

cache 510. It is possible that a cache hit occurs here that was not available earlier. In
either case, control is passed back to Intelligence server 408.

At this point, the user is prompted. The prompting process is illustrated with
respect to Fig. 6. Intelligence server 408 examines report instance 302 to determine what
to do with it next. Ifit finds that execution is completed (or an error occurred) then it
returns report instance 302 to the client. Likewise, report instance 302 may tell server

408 to pass it to another server.

If there are unresolved prompts, report instance 414 asks server 408 to pass it back
to the client. Intelligence server 408 passes report instance 414 back to report net server
502 which prepares a message containing the information the client is likely to use to
answer the prompt. Intelligence server 408 may then put its job into a sleep state, but
may maintain the server-side report instance. Report net client 410 adds information to
the client-side report instance 302, (and it may add objects to the client-side object
server). It raises an event on report server 412. Which raises an outstanding-prompts
event with the user. The user resolves the outstanding prompts in resolution object 310.
The user returns from the event when this is done. Report net client 410 creates a return
message. Changes in resolution object 310 are sent back. Report net server 502 amends
the server-side report instance 414. It relies on Intelligence server 408 to pass it the
existing report instance. Again, as another embodiment, a user may be prompted from an
intelligence server 408 through a web server through web dialoging systems such as one

offered by MicroStrategy web.

bl
xagd

10

15

20

23 PATENT
Attorney Docket No.: 53470.003041

In some events, the user’s answers to the first prompts may cause further prompts
to be triggered, or more application objects to be loaded. So Intelligence server 408
follows up on a client’s prompts by passing the report instance back to resolution server
502. This process continues until all prompts are resolved.

An embodiment of prompting from the user’s perspective is now described. First,
the user obtains a session. From the session the user has an IDSSSource interface (OS) to
the object server, and an IDSSReportSource interface (RS) to the report server. The first
interface is used to obtain objects and the second interface is used to execute reports.

The user then creates a report instance that is to be executed by finding or creating
either a report definition object, or a filter and template object. The user does this with
object server 504. Then the user does one of the following actions. First, the user may
call a method on one of the DSS objects to create a report instance and start executing it
synchronously. Second, the user creates a report instance. The user then calls an execute
command on this instance. The advantage of this manner of executing reports is that it
allows the user to execute reports containing objects that have not been saved to
metadata. The user may also edit the objects in the report instance before execution
starts. Or third, the user may create and execute a report instance. These methods are
used to execute objects that already exist in the metadata. In this process, the user may
avoid the step of loading the definition of report objects to the client machine.

As resolution server 502 finds prompts in the report instance, it accumulates them
in resolution object 310 of report instance 414. Execution continues for as long as

possible, but eventually the system obtains an answer for each prompt.

10

15

20

24 PATENT
Attorney Docket No.: 53470.003041

The resolution server examines a report execution flag recorded in the report
instance. If this flag is set, then the prompts are answered in a default manner without
prompting the user. Either execution can continue, or some prompt in the report has a
default setting that requires user input to continue. In the latter case the report execution
fails.

Otherwise the resolution server seeks help from the user to continue. Control is
passed back to report server 412, which sends an event to the user to resolve the prompts.
There may be three responses to the prompt. These are to abort execution, continue
execution (after answering some prompts), and the default action, which means that each
prompt is answered in whatever default manner was defined when the prompt was
included in the report.

Resolution server 502 populates report instance 414 with properties that it
generated from the definition and prompts. The following three properties may be used:
ResolvedDefiniton — the DSS ReportDefinition object for this report instance;
ResolvedFilter — the DSS filter object for this report instance; and ResolvedTemplate —
the DSS Template object for this report instance. In each case the property contains an
object based on the original object (Definition, Filter, Template) but with substitutions
made for the prompts. If there were no prompts then these properties are left to the
original object. Objects other than these may have been substituted. The version of the
object from the binding table is preferably used rather than the object from the object

server. Subsequent stages of report execution use the resolved objects, not the original

10

15

20

25 PATENT
Attorney Docket No.: 53470.003041

objects. In particular the final grid is based on the ResolvedTemplate, not on the original
template.

After execution has completed, a user can modify the report instance, and then ask
to execute it again. Unless the user provides a special setting (e.g., do cross-tabulation
only) the report instance determines what changes are to be performed. Changes to the
resolved objects cause the cross-tabulation (e.g., layout changes only) or SQL generation
(e.g, contents changes) actions to be performed again. Changing the resolution object, or
the original report definition, filter or template cause the resolution stage (and hence
engine, etc.) to be performed again. Changing the definition of one of the other objects is
not detected.

Prompt resolution occurs according to a default order set by the system. If a
report creator desires to provide a different order, then the following additional feature
may be utilized. A report may be provided a collection of prompt instances that, when
populated, specify the order of resolution of the prompt objects in the report to override
the default order.

While the basic operation of prompt objects and the resolution process has been
described, it should be appreciated that numerous modifications and advanced uses are
also provided, as described below.

Tt may be desired to enable this order of prompts being resolved to be set by a
user. For example, in general, each application object may contain a collection of one or
more prompt objects. The same prompt may appear multiple times in an application

object. An application object records information about how its prompts should be

26 PATENT
Attorney Docket No.: 53470.003041

resolved. This information includes the order of resolution, explanation messages for the
user and whether the prompt is asked as separate questions or merged with other
instances of the same prompt. The resolution object contains a prompt instance for each
separate question that might be asked to the user. This collection can be accessed in two
s ways: in resolution order (this presents the prompts in the order in which they should be
resolved, with each prompt instance indicating from which object (or objects) it comes)
or based upon an object and prompt identifier (this pattern of access is needed to
determine the answer recorded for a specific prompt object).
By default, prompts in objects are resolved without reference to the relationships
10 between the objects. However when one application object (the parent or container
object), contains a reference to another application object (the child or dependent object)

the parent object may override the prompts in the child object through an import / export

mechanism described below. The parent object may elect to export one or more of its

prompts. The child object may elect to import one or more of its prompts. If the child

15 object is used in an object that exports a corresponding prompt then the resolution server
will use the prompt from the parent object instead of the prompt in the child object. The
child object’s prompt is not passed to the user for execution. An application object might
specify that a prompt should automatically be closed as soon as it is detected in a prompt.

One aspect of the present invention relates to making each prompt a separate DSS

20 object. In addition to the properties of a prompt object described above a prompt object

is also defined by principle properties of the prompt interface including the following

described in this paragraph. Type: Indicated the type of data expected to answer to the

10

15

20

27 PATENT
Attorney Docket No.: 53470.003041

prompt; Validation properties: Each type of prompt may have properties that restrict
acceptable answers for this prompt (These properties are used to validate any answer that
might be given and the nature of these properties depends on the nature of the question
asked by the prompt); Prompt properties: Each validation property may be replaced by a
prompt (This allows a user to define a prompt whose valid answers depend on a previous
prompt); Exports properties: As with all types of objects that refer to objects that might
contain prompts, prompt objects contain export collections to contain the prompts
exported to the dependent objects; Default: Each type specific interface may have a
‘Default’ property (This property holds the default answer given to this prompt, if any is
known, which can be overridden when a prompt is used in a particular object -The default
value may not directly contain prompts, but it may contain objects that contain prompts)
Title: A string used to introduce the question; Meaning: An extended explanation (i.e., a
string) about what the question means (for example, this might be something like “The
summary report will exclude all divisions whose total revenue was less than this
amount.”); Reuse: A prompt records information on how the systems responds when
presented with an instance of the prompt from a previous report execution (whether
prompt the user again or use the prompt’s previous value or default value as the default
answer); Properties: The prompt has a DSSProperties interface; Merge: This Boolean
property indicates whether different instances of the same prompt are merged into a
single instance; Index: The index number of a prompt instance in its application object
(for multiple use of the same prompt object); Importable: True if the prompt instance

may be replaced by a prompt imported from the prompt’s container; ImportAs: Used if

28 PATENT
Attorney Docket No.: 53470.003041

the system is to import a prompt instance as a different prompt object; ExportsToPrompt:
Collection of exports the prompt’s container into the prompt (each export describes
another prompt instance in the same application object that corresponds to a prompt
inside this prompt instance); Answer: This property returns the value chosen by the user
5 to answer this prompt (or the value used if the user declines to answer the prompt);
Locations: The places where the prompt is found; Closed: True if the prompt has been
answered; Used: True for a prompt that is used in the report instance (allows a user to
distinguish between prompts that are really used and prompts whose sole purpose 1s to

store a previous answer); the latter prompts are useful if a user expects the prompt to

10 come up later in the resolution process); Incomplete: True for a prompt that cannot be

answered because its validation properties depend on another prompt; Locked: True for a

prompt which has already been answered, but whose answer cannot be changed (a prompt

may be locked if the prompt’s answer was used to build another prompt’s validation

properties); Previous: This property is only available at report execution time. If the user

15 provided a previous resolution object, it contains the Answer for this prompt in the
previous resolution object; and HasPrevious: True if a prompt has a previous value.
A prompt object can be used in one or more of the following ways. The simplest
way is as a DSS object. This is an object stored in the metadata. The second way is as a
prompt instance embedded in another object. This is generally like the metadata object,
20 but the other object may override some of the properties. The third way is as a resolved

(or to be resolved) prompt in a resolution object. In this case the resolution object fills in

10

15

20

29 PATENT
Attorney Docket No.: 53470.003041

additional properties about the specific usage of the prompt. Fig. 7 indicates what
properties relate to the resolution object, prompt instance and prompt object.

Greater details of how some of these properties may be applied are provided. One
such property is the reuse property. To use a prompt object, one is obtained from either a
new creation or an existing prompt object. The default behavior is to merge all instances
of the same prompt object, so a user should reuse an existing prompt object if the user
wants to ask the question that it represents only once.

If a user does not want to reuse the prompt object, then the object may be
embedded in whatever application object is going to use the prompt. Externally the
prompt object appears to be part of the application object. However only its container, or
another object in the C(;ntainer, can use an embedded object.

The reuse property indicates how the system operates when a prompt is reused, or
when to mark a prompt as closed. This value is stored as part of the prompt object. It can
be overridden in a prompt instance that is not merged with other instances of the same
prompt. In other words a prompt instance that has the merge property set to ‘False’ can
assign its own value to the reuse property.

The reuse property may be used as follows. When a new prompt is detected, an
entry is created in the resolution object to hold the answer for the prompt. This prompt
question has a Boolean property, closed, that is used to indicate whether or not the user
has answered the question. Normally this property is set to “False” to indicate that the
user has not answered the question. However the setting of the reuse global property can

be used to “auto-close” the prompt. The question is marked as already answered as soon

10

15

20

30 PATENT
Attorney Docket No.: 53470.003041

as it is detected. This implements a “do not ask me this question again” feature. The
reuse property indicates the circumstances under which the prompt is closed
automatically, and to which value it is closed. The reuse property is also used to
determine what to do if the user declines to answer a prompt.

Fig. 8 illustrates an overview of the properties and objects associated with using a
prompt instance. In this example, the application that contains prompt instances is shown
as a template 802. It should be appreciated that filters are also application objects and the
example of Fig. 8 may be applied to filters as well. Templates 802 contain various
information blocks 804 including application object 806 which contains a collection of all
of the prompt instances that appear somewhere in this particular template. Thus,
application object 806 references all of the prompt instances 808 with each prompt
instance relating to a single prompt object. Further, the prompt instance may contain an
import as 810 reference which records how the prompt can be imported from the report
definition that exists outside of the template. The template 802 also comprises a plurality
of metrics 812 as shown. For each metric that appears in a template, there is a template
metric object 814 which comprises a metric element 816 if the metric is explicitly known.
If, however, the metric is to be defined by a prompt, then the prompt instance 818 1s
included within the template metric object 814. If prompts are exported from the
template into the metric property, then there is export box 820 which includes exports
822 with each of the plurality of prompt instances 824. Below, prompt instances may be
used in the various ways. First, a prompt instance may be inserted into another object.

Thus, a prompt instance may replace properties in another object. If a user wants to use a

:

10

15

20

31 PATENT
Attorney Docket No.: 53470.003041

prompt instead of the normal property they assign the prompt to the prompt-valued
property. Following this assignment the application object creates a prompt instance
based on the given prompt object. The way to obtain the prompt instance is to read back
the value of the prompt-valued property. The prompt instance appears to be the same as
the prompt, but may not be the same object.

A user can override the title and meaning properties of a prompt instance without
affecting the prompt object. This ability allows the same prompt object to be used
multiple times in an application object.

The application object maintains a collection of the prompts that are being used in
the application object. Whenever a user adds a new prompt object to the application
object, the collection is extended to contain the new prompt object. The collection
returns the prompt instance, not the prompt object.

If the user inserts a prompt object into the application object that it is already
using it, the default behavior is to give the user the existing prompt instance. This means
that by default if a user puts the same prompt object in an application object in several
places, the question is asked only once. If a user wants to have several instances of the
same prompt object in an application object, then the user directly inserts a second
instance of the prompt into the collection. Then the user assigns the prompt-valued
property with whichever instance (drawn from the collection) the user wants to use.

The prompt-instance collection cleanly handies multiple use of prompt objects
within a single application object. It indicates which order the prompts should be

presented to the user, and whether or not the same prompt should be asked twice. The

10

15

20

32 PATENT
Attorney Docket No.: 53470.003041

default is merger, but the merge property allows the boolean input on that point. This
property is stored at the prompt instance level. The resolution server merges together
prompt instances (of the same prompt object) that it finds that have merge set to “true.’
They are presented to the user as a single prompt to resolve. If this property is set to
‘false,’ for a particular prompt instance, then the resolution server does not merge that
particular prompt instance in with other prompt instances (of the same prompt object)
found on other application objects. If merge is set to false, the user is only prompted once
for each distinct application object that contains a prompt instance, even if the application
object appears several times in a report. If a designer wants to use an application object
twice in a report, and prompt the user twice, once for each usage, then the designer uses
the prompt import /export mechanism described below. To avoid contradiction, in one
embodiment, two distinct instances of the same prompt object in the same application
object to are not permitted to both have merge equal to true. Other properties of the
prompt object may be modified at the level of the prompt instance such as default, reuse,
importable, import as, and exports to prompt.

There may be situations in which a user wants to have finer control over how
prompt objects are resolved. For example, the user might want to specify that a prompt
on a child object is resolved before a prompt on a parent object, or that there is a more
complex merging structure than the one shared instance, and multiple singleton instances
structure provided by the Merge property. An object can import prompts from another
object that uses this object as one of its dependents. An object can export prompts into its

dependent objects. The effect of this operation is to merge prompt instances between the

10

15

20

33 PATENT
Attorney Docket No.: 53470.003041

parent and the child. The user is prompted with the prompt instance from the parent. The
answer to this instance is used as the answer of both the parent and the child prompt
instance. The import/export mechanism provides us with a way to explicitly merge
prompt instances between a parent and a child object. By being selective about which
prompt instances in the parent are merged with which instances in the child, a user can
impose a complex merging structure. Since prompts are resolved from parents before
children a user can impose a different ordering on prompts from children by importing
them all to the parent. The order in which the prompts are resolved in the parent then
takes priority.

When a prompt instance is exported from a parent object to a child object, the
prompt in the child is replaced with the prompt from the parent. In particular the
properties of the child prompt instance are ignored on the grounds that the user is not
prompted with the child prompt instance. For example, the user may be prompted with
the title and meaning of the parent prompt instance, not of the child prompt instance.

Fig. 9 illustrates this situation. The designer specifies a report with two objects:
object 902 and object 906, each object with its own prompt instance - prompt instance
904 and prompt instance 908, respectively. The designer also specifies that the parent
object 902 exports its instance 904 and the child object 906 imports its instance 908. The
resolution server determines that the imports and exports match as prompt 910. It then
discards the prompt instance 908 of the child object, and instead applies the prompt

instance 904 of the parent object to both the parent and the child.

10

15

20

34 PATENT
Attorney Docket No.: 53470.003041

Each application object contains a collection of prompt instances. Each prompt
instance on the application object has a boolean property called importable. This property
defaults to ‘False.” If the designer sets this property to “True’ for some prompt instance
then the resolution server considers importing another prompt instance into the
application object to replace the prompt instance. The importable property indicates that
the prompt instance might be replaced by a prompt instance imported from a parent
application object.

An application object may also export prompt instances from its collection of
prompt instances into one of its dependent application objects using a collection called
exports. Each dependent object (which could contain prompts) may have its own
collection. If the same child object appears as a dependent in two different places inside
the parent object then there are two collections, one for each instance of the child object.
A designer may export different prompts into each instance of the child object. The
exports collection for a child object always appears in the same interface as the child
object. The collection records information about which prompt instances from this object
are exported into the child object. As with the importable property, exporting a prompt
instance into a dependent object merely indicates a willingness to export the prompt, not
a requirement to export the prompt. The prompt is only exported if the dependent object
also imports it.

With regard to the import/export functionality, the resolution server matches the
imports into a child object with the exports from its parent. When it finds a match it uses

the prompt in the parent object instead of the prompt in the child object.

10

15

20

35 PATENT
Attorney Docket No.: 53470.003041

Imports and exports may be matched together in many ways, including a process
of comparing the ObjectID of the imported and exported prompt instances. In other
words they match if they are both instances of the same prompt object. T he advantage of
this approach is that it allows a designer to add or remove prompt instances (based on
other prompt objects) from either the parent or the child object without breaking the
import / export relationship.

If a designer wants to match together two instances that are based on different
prompt objects, both the importer and the exporter are able to ‘rename’ the prompt object.
The designer may specify any prompt object that the resolution server should use in place
of the prompt instance when matching imports and exports. If the designer wants to
import two different prompt instances based on the same prompt object, the designer may
assign an ExportIndex number to each export.

For the first case prompt-object properties called ImportAs and ExportAs are used
to ‘rename’ a prompt instance. These properties default to the prompt object that
underlies the prompt instance. When the designer indicates that a prompt instance could
be imported by setting Importable to ‘True’ she may also set the ImportAs property of the
prompt instance. This property’s value is a prompt object (not a prompt instance). By
specifying a different prompt object, the designer can make the application object
represent the prompt instance as a different prompt for import purposes. The designer
can set this property to any prompt object that has the same prompt type as the prompt

instance.

10

15

20

36 PATENT
Attorney Docket No.: 53470.003041

Multiple exports keyed to the same prompt object are resolved by using an index
number. The resolution server identifies each import and export by assigning a key that
contains a prompt object and a number to the import or export.

Another aspect of the invention relates to the ability to provide prompts in
prompts. A prompt may also contain a prompt collection and prompt instances of its
own. Prompts may be used as part of the validation parameters of another prompt. Also,
a prompt may be defined as a structure of ordinary objects with prompts embedded inside
the structure- called a draft prompt. For example a prompt can be defined as an
expression containing other prompts.

The prompts that a prompt contains are part of the prompt object. In one
embodiment, they cannot be modified when a prompt object is used in a prompt instance.
A prompt object can also import and export prompt instances in the usual manner.
Within the definition of a prompt object, prompt instances from the prompt object’s
instance collection may be exported to other application objects that are dependents of the
prompt.

An example of this is a prompt object that asks a user to “choose a city” with a
validation property saying that it is valid only if the city is located in a “choose a state”
prompt object. That could be extended again to say that the answer to the “choose a
state” prompt object imposes validation to a “choose a region” prompt object, etc. That
prompt-in-prompt situation is resolved in reverse order by first asking for region, then

state, then city. A nested relationship of prompts is thus possible.

10

15

20

37 PATENT
Attorney Docket No.: 53470.003041

In addition, there may be circumstances where the report designer desires for
multiple answers to be provided for each occurrence of a prompt object in a report rather
than, by default merging the two prompt objects into one.

To suppress the default property, a user may set the merge property to false. If
Merge is set to “False’ then each prompt instance (i.e., specific usage of a prompt ina
specific object) is prompted separately. The answer is still asked once and the answer
applied to the various instances of the prompt object in the report. However even if some
application object appears twice in the report, the prompts in the object may only be
asked once, and the answer may then be used every time the application object is found in
the report.

To enable an prompt object to be asked separately, the import / export facility
according to the present invention may be employed. Specifically, the prompt object may
be imported into the prompt instance at run-time. Thus, each time the application object
is used in the report, the prompt instance of the prompt object is exported into that
application object. The system then treats each prompt instance as a separate question
(and assuming that Merge is ‘False’ on these instances) so they are not merged together.

The following example shows how this can be done. Suppose that the Year
prompt is defined as before, to prompt for a single integer value. Let us define the metric
“SimpleInterest2” to prompt twice for a Year. The first time it prompts for the stop year,
the second time for the start year. For simplicity of this example we will fix the rate to

5% simple interest per year.

10

15

20

38 PATENT
Attorney Docket No.: 53470.003041

A template “T2” is defined with SimpleInterest2 placed in its metrics collection
twice. If the report were executed as is, then the report’s result would show the metric
twice. By turning off the merge functionality, execution prompts for Year twice — once
for YearStart and once for YearStop. The system prompts only once for YearStart and
once for YearStop, even though the metric that contains these instances appears twice in
the template.

If there was a desire to prompt separately for the stop year for each metric, but
only prompt once for the start year for both metrics, that may be achieved by exporting
the stop year to both metrics, from different prompt instances in T2. This export
distinguishes between the two instances, because they are different instances in T2. They
are then prompted separately.

The settings of the prompt instances in T2 are used, rather than the settings of the
single YearStop prompt instance on SimpleInterest2. This allows the designer to give
them separate Meaning and Title strings. Figs. 10 and 11a-b illustrate the picture when a
report containing this template is resolved. The prompt Year is resolved to three prompt
questions in the resolution object, distinguished from each other as shown in the diagram.

Another feature of the present invention involves resolution ordering of prompt
questions. The resolution server determines which order to present the prompt questions
to the user. A list of prompt instances is determined from the prompt instance collections
of all of the objects that appear in the report instance. The exports, importable and merge
parameters specify exactly which of these instances are be merged together to make a

single prompt question.

39 PATENT
Attorney Docket No.: 53470.003041

One method for determining the order in which to present merged objects is as
follows. The non-prompt application objects are ordered in the report instance in a
topological order. This means that every object appears before its dependents. In
particular, the report definition is the first object. Each object preferably only appears
s once in the list. This list is then expanded by replacing each object with the list of prompt

instances that it contains. The list of prompt instances that are contained in the prompt
instance is inserted before each prompt instance. That step is repeated recursively until
every prompt instance appears at least once. Each merged instance only appears once by
striking out duplicates — the first place it occurs.

10 The resolution object is a collection of prompts. It contains prompt questions.
Each prompt question represents a single question that might be given to the user. A
prompt question is obtained by merging together prompt instances from the report. One

of the objectives of the resolution stage of report execution is to provide an answer to

each prompt that occurs in the report instance. The resolution object collects together the

15 prompts that appear in the report instance. There are several ways in which an answer
can be bound to a prompt including the following. The answer was known in advance.
This happens if a report instance is executed using an old resolution object and a suitable
answer already exists in the collection. Also, the prompt may have been specified to be
closed, even if there was no previous answer. Again, setting the reuse property does this.

20 The designer can override the default value on a prompt instance to make the instance
default to a particular value. A designer might do this if she wants to reuse an existing

application object, but also wants to fix the value of one of the prompts in the object.

10

15

20

40 PATENT
Attorney Docket No.: 53470.003041

Also, the user of the resolution object supplies an explicit answer to a prompt;
such as through a GUI response, a spreadsheet read or a data repository access.

An answer may be provided in the following ways, for example. The user can
close the prompt to the previous value of the prompt (if any is known), the client can
close the prompt to its default value, or the client can cancel the prompt. Canceling the
prompt means that the client explicitly states that the prompt should not have an answer.
It corresponds to the ‘empty’ value of a variant data type. Fourth, the client of the
resolution object may explicitly refuse to answer the question. We say that our client has
declined to answer. The resolution object’s response depends on the reuse setting made
when the prompt object or prompt instance was defined. The default setting of reuse
states that the resolution object should close a prompt to its default value if the client
declines to answer it.

To prompt the user through a GUI, a client-side GUI wants to present the prompts
in order. So we allow the client to access the resolution collection by index number.

This access method shows all of the prompts in the resolution, whether or not an answer
already exists for them, and whether or not they are actually used.

If the client uses a wizard-like dialog to present these prompts to the user, the user
may be permitted to answer them in any order.

Sometimes a prompt (the ‘outer’ prompt) cannot be answered because the prompt
is dependent on another prompt (the ‘inner” prompt). To be more precise this happens

when the outer prompt uses the inner prompt to define its validation properties. An

10

15

20

41 PATENT
Attorney Docket No.: 53470.003041

answer to the outer prompt cannot be validated until after the user has assigned an answer
to the inner prompt. The outer prompt is considered incomplete.

A read-only Boolean property called Incomplete may be used that is normally
‘False.” However for an incomplete prompt question it returns “True.” An incomplete
prompt may not be closed until after all its inner prompt(s) have been closed. The
resolution server is used to change a prompt’s status from incomplete to complete. The
resolution server has the power to perform substitutions of answers into prompts. The
concept of incomplete prompts is why the resolution object may override the validation
properties of a prompt question. By using import / export it is possible to design a report
instance in which the same prompt is resolved multiple times with different values
substituted in for its inner prompts. A resolution object usually presents inner prompts
before outer prompts in its collection. (An exception may be if the inner prompts appear
in a draft prompt). If a user examines the prompt questions in order, and closes each one
and then runs the resolution server again before going on to the next prompt, then the user
does not encounter an incomplete prompt.

Various methods on the resolution object can be used to modify which prompts
appear in the resolution object. A client can call these methods if a client wants to add or
remove prompts directly from a resolution object.

Clients can use these methods to edit resolution objects that they intend to save to
metadata. However, a client preferably avoids editing a resolution object during report
execution, since the resolution server may not be able to detect the changes, and it may

become confused.

10

15

20

42 PATENT
Attorney Docket No.: 53470.003041

Since the resolution object is a collection of prompts, the usual methods to edit
the collection are provided. In particular, there are clear and remove functions to take
prompts out of the collection, and an add function to put prompts into the collection.

Clear works in the usual way — it removes all of the prompts from a resolution.
Remove is used to remove a specific member from the collection. The member can be
referred to by index number, by passing in a reference to the prompt question that is to be
removed, or by using any Item parameter that can be unambiguously matched to a
particular prompt question.

The add method can be used to add a new prompt question. The argument to add
can either be a prompt object (in which case a prompt question is added for Merge equals
“True’ instances of the prompt) or a prompt instance. If the collection already contains a
suitable instance then the existing instance, is returned, and a new instance is not added.

A special functionality is provided for one resolution to combine its prompt
questions with the prompts in another resolution. This functionality is provided by a
“combine” method. It creates new prompt questions in this resolution, based on those in
the other resolution.

A resolution object has a method CleanUp that takes no parameters. This method
causes the resolution object to clean itself up by deleting all information stored in the
object involved with executing a specific report instance. Only the answers given to the
prompt questions are retained. This method has several effects. All location information
(except the primary location) is deleted. No prompt is marked as Used. No prompt is

marked as Closed. The old answer for each prompt is moved to its Previous property.

43 PATENT
Attorney Docket No.: 53470.003041

Any prompt whose validation properties refer to another prompt is marked as Incomplete,
and any value previously substituted into the validation properties is deleted. Other
internal storage used during resolution is freed.

A user may call this method after report execution is complete if the user wants to

5 save the resolution object used for report execution into the metadata. However, it is not
necessary to clean up a resolution object before saving it to the metadata, but failing to do
so may result in a substantial storage overhead, as it saves irrelevant information. Since
there are legitimate reasons for a user to want to save a resolution object complete with
execution information (e.g. the user wants to schedule the report to execute at a later date)
10 the object server permits a user to save a resolution object without cleaning it up first.

A functionality is provided to resolve a specific object. This functionality is also

used in report execution, when it is applied to the report definition object that acts as the

starting place of the definition of the report. The operation of resolving an object means

to walk through the object, and all of its known dependents, and add prompts to a
15 resolution object for all of the prompts that are found. This process is performed by a
special component called the resolution server.

The resolve method is called to ask the resolution object to resolve an object. The
resolution object invokes the resolution server to scan the argument and its dependents
looking for prompts. Prompts which are discovered are added to the resolution object.

20 The resolution object is cleaned up before new information is added. The Resolve
method takes an optional parameter, CacheOnly, that defaults to ‘False’. Setting this

parameter to “True’ ensures that no new objects are to be loaded during resolution. This

S

10

15

20

44 PATENT
Attorney Docket No.: 53470.003041

functionality is essential if a client wants to use an object with prompts as a ‘template’ for
building other objects.

The resolution action preferably fails if the resolution server detects some
inconsistency in the way that the dependent objects are organized. Situations in which an
error may be generated include the following.

1. There is a cycle in the dependency graph. For example, if an object A is
defined in terms of an object B, and object B is defined in terms of object A, then the
resolution server will refuse to resolve any report which uses either object. Where
possible, editors will reject objects that contain dependency cycles, but since a single
transaction is not used to save all objects involved in a report, it is possible to create this
situation by editing A and B simultaneously.

2. There is a cycle in the import / export relationships. It is an error if two
mutually dependent objects both export and import the same prompt to each other. Itis
required that import / export is used to allow a ‘parent” object to take control of a prompt
from its “child.” If the import / export relationships contain a cycle it cannot be
determined which object is the parent and which is the child.

3. There is a cycle in the ‘incomplete’ dependence between prompts. It is not
acceptable for prompts P and Q to both use the other prompt as one of its validation
properties. If such a configuration were permitted then both prompts would be marked as
Incomplete and a user would be unable to close either prompt.

4. There is a merging inconsistency involving prompts as validation

properties for other prompts. Suppose that the answer of one (inner) prompt is used

10

15

20

45 PATENT
Attorney Docket No.: 53470.003041

inside another (outer) prompt, either as a validation property, or as a blank prompt in a
draft prompt. By using multiple instances and import / export it is possible for a user to
contrive a situation in which the inner prompt specified to be asked twice, and that the
outer prompt is asked only once. This presents a problem because the outer prompt is to
be asked once, but it is to be asked using two different values of the inner prompt.

5. The situation described in the previous paragraph for non-draft prompts
may also be forbidden when only a single instance of the outer prompt appears, even
though the definition does not explicitly say that the outer prompt is asked only once.
This situation may be forbidden because it would be highly confusing for a user, who
would be asked the same prompt twice with the same title and meaning. The fact that the
two prompt instances do in fact differ (by the validation requirements applied to the
answer) would not be apparent to the user.

The default behavior when a user asks to resolve an object is to clean up the
resolution object before starting the resolution. However, there are many situations in
which an object cannot be completely resolved with a single execution of the resolution
server. For example, if one of the prompts in the resolution object is incomplete, the
resolution server should be invoked a second time to make it substitute in the answer to
the inner prompts. Also, if the answer to one of the prompts refers to an object that did
not previously appear as a dependent, the new object and its dependents should be
scanned for further prompts. And if a user closes an object valued prompt, the resolution
server should be used to determine if any other prompts are exported from the newly

closed prompt.

10

15

20

46 PATENT
Attorney Docket No.: 53470.003041

An optional parameter Repeat is provided that defaults to ‘False.” A user should
set this parameter to ‘True’ if the user wants to keep existing information in the resolution
object.

Details about the various types of prompt will now be discussed. For each type of
prompt a description is provided about how to read and write the values assigned to the
prompt. An explanation is also given about what validation properties are available for
each type of prompt.

The type of a prompt is indicated by the PromptType enumeration. For every type
of prompt, an answer for the prompt is represented using a single VARIANT property.
When the prompts’ answer cannot be expressed as a simple value, the property returns a
suitable collection object that can be used to contain the answer. Since a prompt question
has up to three answers associated with it, there are three properties available to hold an
answer.

First, the default answer for the prompt is held in the property Default. Second,
the answer for a particular prompt instance is held in the Answer property. Third, the
previous answer for a prompt question is returned in the Previous property.

There are several properties available to validate the answer of a prompt. The
meaning, if any, of one of these properties depends on the type of the prompt. For some
types of prompts these properties are unused. These validation properties are normally
assigned at the prompt object level, and they normally cannot be overridden by a prompt
instance. First, there is the property minimum (VARIANT), which is preferably the same

type as Maximum (or Empty), and may be specified such that it is never bigger than

10

15

20

47 PATENT
Attorney Docket No.: 53470.003041

Maximum. Second, there is the property Maximum (VARIANT), which is preferably the
same type as Minimum (or Empty), and is never smaller than Minimum. Third, there is
an entity restriction (VARIANT) that puts a restriction on the available answers. It is
typically a filter, a search object or an expression type. Lastly, there is an object origin
(VARIANT), that acts as a starting point for finding objects that satisfy the prompt. Itis,
typically an attribute or a filter.

A simple prompt is a prompt whose answer corresponds to a simple datatype.
Simple prompts are defined for the most common Variant types.

A Boolean prompt is a prompt whose answer has the type Boolean. It has no
validation properties, since for the Boolean type eliminating a possible value is
tantamount to specifying which value is returned. That is, there is no point is defining a
prompt whose answer is ‘True’ or ‘False’, but for which False is not a valid answer —
since this means that the user is not being given a choice at all.

Thus, to define a Boolean prompt one declares that the prompt is Boolean. The
title and meaning of the prompt is defined, since these are the properties that distinguish
between different Boolean prompts.

A Long prompt is a prompt whose answer has type Long. A prompt’s designer
can use the minimum and maximum propetties to specify minimum and maximum values
for a valid answer. These properties should either be set to empty (signifying no
minimum/maximum) or to a long value. Minimum should be smaller than or equal to the

answer property, which in turn must be smaller than or equal to maximum.

48 PATENT
Attorney Docket No.: 53470.003041

A string prompt is a prompt whose answer is a string value. The default is to
accept any string as a valid response. Integer values are assigned to Minimum or
Maximum to specify a valid range for the length of the string. There is no upper limit on
the length of the string.

5 A Double prompt is a prompt whose answer has type Double. A prompt’s
designer can use the Minimum and Maximum properties to specify Minimum and
Maximum values for a valid answer. These properties should either be set to Empty
(signifying no minimum/maximum) or to a numeric value. Minimum should be smaller
than or equal to Answer, which in turn should be smaller than or equal to Maximum.

10 A Date prompt is a prompt used to specify a date. This should be done using the
VB Date type, but the final decision will depend on how it is determined to represent date
values.

A complex prompt is a prompt that cannot be expressed as a single value, but

nevertheless is a fundamental COM object in the COM API. Most uses of prompts in the

HS
]

15 COM API are complex prompts.
A DSS Object prompt is a prompt whose result takes the form of a set of DSS
Objects drawn from the metadata. The Minimum and Maximum properties are used with
integer values to specify an acceptable range for the number of objects in the answer. In
particular a designer would set both of these properties to 1 to define a prompt for a single
20 DSS Object.
Specifying how many objects are acceptable does not provide sufficient

information to validate an object prompt. It should also be known which objects are

10

15

20

49 PATENT
Attorney Docket No.: 53470.003041

acceptable. Rather than defining a new set of properties for the various ways of limiting
an object choice, the existing concept of a search object is reused.

A search object is an object that is used to specify a search. It does this by
containing a list of restrictions on objects (by type, by name, by description, by parent
folder, by owner, by content, etc.). An object prompt uses a search object to validate its
answer. Objects that would have been returned by the search are acceptable. A GUI
might choose to execute the search, and then invite the user to choose from the results. A
search object is passed to the prompt by setting its Restriction property.

A search object is a DSS Object in its own right, so it is saved separately into the

metadata. A user can always embed the search object in the prompt object (or in the same

container as the prompt object if the prompt object is itself embedded) if the user wishes
to conceal the use of a separate object.

In order to use an object prompt it must be understood how to read and write an
answer for the prompt. The VARIANT returned by all three value properties of an object
prompt (Default, Answer, Previous) may either be empty (if no value has been specified)
or may contain an object reference (i.e. an IDispatch pointer) to a folder object.

The folder object (which will act like a search folder) may contain whichever
objects the user or designer selected. In particular this allows a client to distinguish
between the absence of the value (Variant will be empty), and the assigned value “no
objects selected” (Variant will be an empty folder).

A user can assign a value to the prompt. There are two basic ways to do this. One

way is to assign something to the property as a whole. This is useful if the user has

10

15

20

50 PATENT
Attorney Docket No.: 53470.003041

access to a single object that describes the selection. However, if the user wants to select
multiple objects, then the user should use the AddCopy method of the folder returned by
the property to add additional objects to the property. Of course the user can only amend
the value if they obtained the prompt interface in a context which allows write access to
it.

An elements prompt is a prompt whose answer takes the form of a set of elements.
An elements prompt is very similar to an objects prompt in the sense that the answer
takes the form of a collection. There are also similar issues — how to validate which
clements may be put in the collection, how to read the contents of the collection, how to
modify the collection.

As with the objects prompt, the Minimum and Maximum properties may be used
to specify a range of acceptable sizes for an element collection. A user sets these
properties to empty if the user doesn’t care to set a restriction.

If the designer does nothing else then the prompt will accept any set of elements.
Generally speaking, a designer preferably wants to limit the set of available elements in
some way.

The simplest way to do this is to assign a value to the Origin property. This value
is interpreted as describing the place from which the elements are drawn. Either an
Attribute (meaning that the elements are drawn from the given attribute) or a Dimension
(meaning that the elements are drawn from an attribute in the dimension) may be used. A
dimension object contains all the browse path information needed to allow the user to

chose elements from the dimension.

10

15

20

51 PATENT
Attorney Docket No.: 53470.003041

In addition to containing relationships between their attributes, dimensions also
contain filtering information. So a designer could create a dimension that specifies that
only a subset of its elements are presented to a user. The dimension object also has
provision to store multiple filters, and even filter templates (user types in first three letters
of element etc.) to allow sophisticated control of element browsing.

This functionality permits a designer to specify a prompt that consists of selecting
elements from an attribute using a particular filter — the designer could do this by creating
a dimension that contains just the chosen attribute. However, to prevent the designer
from having to create singleton dimensions in this way a designer is permitted to set the
Restriction property to a filter object when the Origin property is an attribute. This means
that the prompt only contains elements from the attribute that satisfy the filter. Since a
filter can be defined using an explicit list of elements, this allows a designer to specify
exactly which elements are available for the prompt. However, using a dimension is the
only way that a designer can modify the default browse forms collection in the attribute.

The configuration of a dimension in the origin property and an attribute in the
restriction property may also be used. This means that only elements from the given
attribute are acceptable, but the user should be asked to use the given dimension to select
the elements. The user can browse through other attributes in the dimension to reach the
requested attribute, but cannot select elements from these attributes.

Accessing one of the value properties (Default, Answer or Previous) for the
prompt object always returns either empty (if the value property has not been assigned) or

an element collection (containing whichever elements were selected). This is done even

10

15

20

52 PATENT
Attorney Docket No.: 53470.003041

if the collection contains only zero or a single element. This enables a user to distinguish
between an unassigned value and a value that has been assigned to the empty collection
without requiring a user to handle too many cases when examining one of these values.

A user may desire to be able to assign a new value to an elements prompt. As
with the objects prompt the user can do this either by assigning a complete value to the
property, or by retrieving an element collection from the property and then using the
normal collection methods to modify the collection. The complete assignment can be to
empty (to unset the property), to nothing (to make the property into an empty collection to
a single element to make the collection contain just this element) or to an existing
collection of elements (the entire collection is copied into the prompt instance).

An expression prompt is a prompt whose answer takes the form of a COM API
expression. Expressions may be used to define both filters and metrics. A prompt for an
expression is also useful to define concepts like a metric qualification.

Using an expression prompt represents a situation in which the user is allowed to
build any expression that they like. The only restrictions that may be imposed on the user
are a simple depth requirement, and a restriction on the type of expression allowed. A
standard expression editor could be used to prompt a user to answer an expression
prompt.

For an expression prompt the Minimum and Maximum properties are used to
record a range for the depth of a valid expression. These allow a designer to specify
“how big” the expression is allowed to be. The depth of an expression is the number of

IDSSOperator nodes encountered on the longest path from the root of the expression to a

53 PATENT
Attorney Docket No.: 53470.003041

leaf. Thus an expression has depth zero if it consists of a single leaf node, depth 1 if it
contains a single operator (as in an Abell metric qualification “metric <327), depth 2 if it
contains an operator nested within an operator (e.g. “metric < metric2 + 1) and so on.
An empty expression may be said to have a depth of 1.

5 An expression prompt uses the restriction property to record which type of
expression it represents. Assign this property with a value taken from ExpressionType
enumeration. This enumeration, which remains to be defined, contains entries like
DssExpressionFilter or DssExpressionMetricQualification and so on. Each parameter
corresponds to a different type of expression that the parser is able to recognize and

10 validate.
A value property (Default, Answer or Previous) either returns empty if the value 1s
unset, or returns the IDSSExpression interface (if the prompt is assigned). As usual this
allows the user to distinguish between the absence of a value, and the value which

represents an empty expression.

15 Users assign an expression value to a property in the usual way. They would
assign ‘Empty’ to it to unset the property, ‘Nothing’ to set it to the empty expression, and
an existing expression to replace the entire expression. Generally a user will edit the
expression directly, by reading an IDSSExpression interface from the value property, and
then editing the expression object in the same manner as is used to construct metrics or

20 any other expression based object.

A draft prompt is a type of prompt which presents itself to a client as a collection

of other prompts. The prompts in a draft prompt are referred to as blank prompts or

10

15

20

>4 PATENT
Attorney Docket No.: 53470.003041

simply blanks. A blank prompt is usually one of the simple or complex prompts outlined
above, but it can also itself be a draft prompt. A blank prompt does not carry enough
context information to uniquely identify it to the user. When a user is answering blank
prompts the user needs to know both which blank prompt he is answering, and which
instance of the draft prompt question it comes from.

A draft prompt is more complex to use and understand than other types of
prompts. Notwithstanding, there are at least two benefits of using draft prompts. First,
draft prompts allow a designer to connect together several prompt objects into a single
larger prompt. The user is prompted for all of these connected prompt objects as a single
prompt. The user can answer the blank prompts as individual prompts, or answer the
draft prompt as a single operation, in which case all the blank prompts are also answered.
Second, draft prompts permit a designer to present prompts to the user with more context
information than just the collection of prompt locations.

The collection of blank prompts in a draft prompt may be presented in two ways.
One way is as an ordered collection of prompt questions. Another way is in the form of a
(read-only) DSS Object, or fragment of a DSS Object, called the draft prompt’s origin
that contains the blank prompts. The answer of a draft prompt consists of the origin with
the answers to all of the blank prompts filled in.

If there are two or more non-merged instances of a draft prompt, then there may
be two identical instances of the blank prompts that it contains. The resolution object
may distinguish between these instances solely by which draft prompt instance they are

below — there is no where for the designer of the report to place a separate Title and

55 PATENT
Attorney Docket No.: 53470.003041

Meaning property for these blanks, since they both were generated from the same prompt
instance. This is not a problem however, since a client application presents them to the
user as part of the draft prompt and not as separate prompt instances.
Draft prompts are just a class of prompt types. When defining a draft prompt the
5 Origin property is used to define the prompt’s draft. The draft prompt appears to be an
instance of whatever type of object, or object fragment the draft prompt represents. The
designer should populate this object in the usual way, using normal interfaces, and

prompt instances.

When populating the Origin object, the design should use other prompts to

10 indicate blanks in the draft. There is no point in designing a draft prompt whose Origin

object does not contain any other prompts, since this would mean that there is nothing left

for the user to fill in. The blank prompts may appear in the draft prompt’s instance
collection.

When the resolution object populates its answer property, it may copy over the

15 fixed structure from the origin property. For example, if the origin property contains an
expression node, then the same node will be duplicated in the answer property. When the
origin contains a prompt instance, the answer may instead contain a prompt question.

The Prompts collection of the draft prompt’s question acts as a shortcut to all of these
prompt questions. These questions are the blank prompts that define the draft prompt.

20 Both the Merge property and the import / export mechanism can be used to
specify that a blank prompt is the same as an ordinary prompt that is available directly

from the resolution collection. If this happens the resolution object may only make one

10

15

20

56 PATENT
Attorney Docket No.: 53470.003041

prompt question, but the question can be accessed either directly from the resolution
object, or from the prompt question that represents the draft prompt.

However if a blank prompt has the merge property set to ‘False’, and no other
prompt is imported to replace it, then it will not appear directly in the resolution
collection. This is the behavior that sets the draft prompt apart from other types of
prompt. The resolution object will create special prompt question for the blank prompt,
which is only accessible from the draft prompt’s question.

The user can close the draft prompt by closing each blank prompt in the draft
prompt. The user either walks through the structures in the answer property, or goes to
the prompts collection to obtain a list of blank prompts. Once the user has a blank
prompt the user can close it using any one of the normal techniques. The answer to each
blank prompt must satisfy the validation restrictions of that blank prompt.

A draft prompt is preferably closed when the blank prompts in the draft prompt
are closed. Normally a user answers a draft prompt by separately closing all of the blank
prompts in the draft prompt. As soon as the user closes the last blank prompt, the closed
property of the draft prompt will set to “True.’

However, a user can also close a draft prompt using a single operation. When the
user does this, the resolution object will automatically close all of the blank prompts. Fig.
12 describes how the resolution object does this. If the user cancels the draft prompt, as
in 1202, blank prompts associated with that draft prompt are canceled as shown in 1204.
However, if the draft prompt cannot be cancelled, an error is returned in 1206. If the user

sets the draft prompt to default as in 1208, each blank prompt which is open is closed and

10

15

20

57 PATENT
Attorney Docket No.: 53470.003041

set to its default value in 1210. If the blank prompt has no default value, it is canceled. If
it cannot be canceled in this situation, an error it returned at 1212. If the user sets the
draft prompt to preview as in 1214, each open blank prompt is closed and set to its
previous value (1216). If the draft prompt has no previous value, then this user action in
declined. However, if the blank prompt’s reuse property prohibits the blank prompt from
being declined, an error is returned at 1218. If the user declines to answer the draft
prompt, as in 1220, the system determines an action for the draft prompt at 1222. The
actions could be as previously described, i.e. previous, default, cancel or break. An error
will occur at 1224 if the draft prompt’s Reuse property states it cannot be declined, or if
one of the blank prompts cannot be answered in the prescribed manner.

It is possible for a blank prompt to be incomplete if it requires some other prompt
to be closed in order to define the validation restrictions of the blank prompt. However, it
is not possible for a draft prompt to be incomplete, if it doesn’t have any validation
restrictions of its own.

A draft prompt does not have a default value, or a previous value of its own.
Instead it uses the values for each of its blank prompts. This means that both the Default
and Previous properties of a draft prompt are set to “Empty” on prompt objects and
prompt instances. On a prompt question they should return structures showing what
would happen if the user were to select the Default or Previous value. In particular, the
cases “P.Answer = P.Default”, “P.Answer = P.Previous” and “P.Answer = Empty”

should be distinguishable.

10

15

20

58 PATENT
Attorney Docket No.: 53470.003041

Fig. 13 illustrates an example of what happens when draft prompts are resolved.
It shows the definitions of five objects — a filter 1302 called F, and four prompt objects,
which consist of two draft prompts, 1304 and 1306, also called E and MQ, a metric
prompt 1308 called M and a double prompt 1308 called V. Filter object 1302, and
prompt objects 1304 and 1306, each shows its definition and prompt instances 1326,
1328 and 1330 respectively.

The resolution object is shown that would be generated if the filter were resolved.
Fach oval 1312, 1314, 1316, 1318, 1320, 1322, 1324 and 1330 below the resolution
object represents one of the eight prompts that will be given to the user in order to answer
all the prompts in the filter.

A normal prompt like M (1332) and D (1316, 1320, 1324) may preferably not
contain any other prompts, but the draft prompts may contain other prompts. Itis
possible for one draft prompt to be nested inside another draft prompt. In Fig. 13, the
instance of the E 1312 prompt contains an instance of MQ, which in turn contains an
instance of M 1332 and an instance of D 1316. To simplify the diagram the expression
trees have not been drawn in the resolution object, but in fact each draft prompt exposes
its children via an expression tree as well as via a collection.

Normally a prompt question’s primary location is sufficient to identify to which
prompt question being referenced. For example, MQ is asked three times (1314, 1318
and 1322), once for each usage of MQ in the definitions. However when a prompt 1S
below a draft prompt the primary location may not suffice. In this example, the D prompt

is asked three times (1316, 1312, 1324), each time with the same primary location. The

-

10

15

20

59 PATENT
Attorney Docket No.: 53470.003041

only way to distinguish between each occurrence is to see which draft prompt contains it.
Since the M 1332 prompt’s Merge property is “True’, this prompt is only asked once.
The prompt question can be accessed directly from the main collection in the resolution
object, and also from each instance of MQ.

An expression draft prompt is a draft prompt whose answer is an expression. It
can be used to prompt for an entire expression, or to prompt for a sub-expression of a
larger expression. It differs from the usual expression prompt because the designer of an
expression draft prompt must provide an Origin expression. This expression contains
prompts to indicate blanks that we want the user to fill in when the draft prompt is
executed.

The expression draft prompt should be used to define something like a simple
metric qualification prompt. The designer of the prompt can specify the format of the
expression. The GUI can then recognize whether or not it is appropriate to use a special
metric qualification dialog to ask the user to answer the prompt. The GUI should attach a
special DSSProperty to a prompt to indicate whether or not it meets the requirements of
such a dialog.

Origin may be the only validation property used for an expression draft prompt.
As explained above, this property is used to define the draft of a valid answer. A designer
inserts prompts in the Origin to indicate blanks in the draft. During report execution the
user may be required to supply an answer for each blank prompt. Unless Merge is set to

‘True’ for a blank prompt, or the import / export mechanism is used, the blank prompt is

10

15

20

60 PATENT
Attorney Docket No.: 53470.003041

preferably required to be answered once for each question that appears in the resolution
object based on the draft prompt.

An example is provided here. A metric qualification prompt is defined. This
prompt is based on three other prompts: “SelectBaseMetric”, “ChooseOp” and
“ChoosePositive.”

SelectBaseMetric prompts the user to select a metric from a folder of metrics. We
want to do this once during report execution, and use the same metric in the template, and
in the metric qualification. ChooseOp selects a single operator object. ChoosePositive
selects a floating-point number, that must be larger than zero. These prompts are desired
to be treated simply as ‘blanks’ in the definition of the metric qualification. If the metric
qualification appears twice then they should be asked twice.

The three value properties (Default, Answer and Previous) of a question node
based on an expression draft all return either ‘Empty’ or an IDSSExpression object. In
the first case it indicates that the value is not set. In the second case the interface is the
root of the expression. The expression can be examined in exactly the same way as it is
examined for an expression prompt. The expression cannot be edited — its purpose is to
show the user the relationship between the blank nodes in the expression.

If a user wants to answer an expression draft prompt, the user should answer the
single question based on the SelectBaseMetric prompt. The resolution object preferably
makes one question, and return it from multiple places.

The user also should close the ChooseOp and ChoosePositive questions. These

questions may preferably be found under questions based on the draft prompt. The user

- 10

15

20

61 PATENT
Attorney Docket No.: 53470.003041

can either extract them from the Answer property of the draft prompt or use the Prompts
collection on the draft prompt. If the draft prompt appears several times in the resolution
object, then the blank questions should be answered separately for each appearance of the
draft prompt.

Fig. 14 is an embodiment of the available prompt types according to the present
invention, and the acceptable data types for each type of prompt for the various validation
properties.

As disclosed above, it is possible to place a prompt object within another prompt
object. Details of how export and import worked when one prompt was used inside
another prompt have been provided. Now, further details on how one prompt can make
use of another prompt are provided.

There is nothing particularly special about using one prompt inside another
prompt. The procedure is the same as when a prompt is used in any other application
object. The object that wants to use the prompt exposes a property (called Prompt if it
only takes one prompt like IDSSConstant, or called something like XXXXPrompt if it is
the prompt for the property XXXX). The object that wants to use the prompt assigns the
prompt to the prompt-valued property.

The prompt-valued properties of a prompt are defined at the prompt object level.
The import /export mechanism can be used to modify how the prompts inside a prompt
are resolved.

When a prompt appears inside another prompt, it forces the inner prompt to be

answered before the outer prompt. The value of the inner prompt is then used to validate

10

15

20

62 PATENT
Attorney Docket No.: 53470.003041

the outer prompt when it is answered. Two prompts, however, should preferably not be
mutually embedded in each other. Prompts defined in this way fail validation. If a user
executes a report containing mutually recursive prompts, then report execution may cause
failure.

It is also possible for one prompt to use another one indirectly. This happens if a
DSS object assigned to one of the prompt’s properties contains prompts itself. For
example, a user could place a prompt in the filter assigned to the Restriction property of
an elements prompt. The prompts are evaluated in order; otherwise the correct list of
elements cannot be generated for the user to use to select the outer prompt.

The mechanism of incomplete prompts described above is used to enforce this
dependency of one prompt on another. It allows the resolution object to refuse to close
the outer prompt until the inner prompt has been closed.

There are four prompt-valued properties in a prompt object, which correspond to
the four validation properties of a prompt. These allow a user to define a prompt whose
value depends on another prompt that has to be answered first. A user is not allowed to
supply a prompt for the answer value of a prompt — since numerous mechanisms have
already been defined by which a user can specify that two prompts have the same answer.
The prompt-valued properties include MinimumPrompt, MaximumPrompt,
RestrictionPrompt, and OriginPrompt. With these, a prompt could be defined as that it’s
validation depends on another prompt.

For example, a designer may want to make a prompt that asks the user to select a

single Store from the Stores in a filter chosen by another prompt. The only way to do this

10

15

20

63 PATENT
Attorney Docket No.: 53470.003041

is to make the new prompt dependent on the old one. This illustrates why the locking
mechanism is essential -- there is no way to determine if an element is valid until the user
has chosen the filter.

A designer can achieve much more complex relationships between prompts by
permitting one prompt to indirectly refer to another prompt. The concepts however are
the same.

Figs. 15, 16, and 17 show the relationships between the COM API objects used to
manipulate prompts. Three different object maps are shown in Figs. 15, 16 and 17 for the
three different ways in which prompts are used. In each case only the properties are
shown that are relevant to the particular case.

Fig. 15 shows the properties on the prompt interface that are used when defining
prompt objects. Information on the prompt is maintained at 1504, and its default kept at
1506. The prompt’s Minimum and Maximum Restriction and Origin are at 1508, 1510,
1512 and 1514 respectively. Similarly, Minimum Prompt, Maximum Prompt, Restriction
Prompt and Origin Prompt are kept at 1516, 1518, 1520 and 1522, and Minimum
Imports, Maximum Imports, Restriction Imports and Original Imports are at 1524, 1526,
1528 and 1530. The prompt interface also has other properties, but they are not used to
define prompt objects.

Fig. 16 shows the ways in which a prompt instance can be used on an object 1602.
Fig. 16 only shows those properties on the prompt interface that can be assigned when the
prompt is used as a prompt instance. There are three ways in which a prompt instance

may be used. There could be an explicit reference to the prompt instance as illustrated by

5

10

64 PATENT
Attorney Docket No.: 53470.003041

1616. The prompt instance could be exported to another application object that appears
in the definition as shown in 1618, 1620, 1622, or 1624. Or, the prompt could be
exported to some other prompt as shown in 1604, 1606, 1608, 1610, 1612, and 1614.

Fig. 17 shows the properties of the IDSSPrompt interface at 1704-1720 that are
used when it is accessed from the resolution interface. In this case there are properties to
show the current and former value of the prompt. There is also a collection of locations
1712 where the prompt was used.

Other embodiments and uses of the invention will be apparent to those skilled in
the art from consideration of the specification and practice of the invention disclosed

herein. The specification and examples should be considered exemplary only.

	2001-06-19 Specification

